Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 233-239, 2017.
Article in English | WPRIM | ID: wpr-728575

ABSTRACT

Intracellular calcium (Ca²⁺) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide (H₂O₂) on intracellular Ca²⁺ accumulation in mouse pancreatic acinar cells. Perfusion of H₂O₂ at 300 µM resulted in additional elevation of intracellular Ca²⁺ levels and termination of oscillatory Ca²⁺ signals induced by carbamylcholine (CCh) in the presence of normal extracellular Ca²⁺. Antioxidants, catalase or DTT, completely prevented H₂O₂-induced additional Ca²⁺ increase and termination of Ca²⁺ oscillation. In Ca²⁺-free medium, H₂O₂ still enhanced CCh-induced intracellular Ca²⁺ levels and thapsigargin (TG) mimicked H₂O₂-induced cytosolic Ca²⁺ increase. Furthermore, H₂O₂-induced elevation of intracellular Ca²⁺ levels was abolished under sarco/endoplasmic reticulum Ca²⁺ ATPase-inactivated condition by TG pretreatment with CCh. H₂O₂ at 300 µM failed to affect store-operated Ca²⁺ entry or Ca²⁺ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial Ca²⁺ uniporter blocker, failed to attenuate H₂O₂-induced intracellular Ca²⁺ elevation. These results provide evidence that excessive generation of H₂O₂ in pathological conditions could accumulate intracellular Ca²⁺ by attenuating refilling of internal Ca²⁺ stores rather than by inhibiting Ca²⁺ extrusion to extracellular fluid or enhancing Ca²⁺ mobilization from extracellular medium in mouse pancreatic acinar cells.


Subject(s)
Animals , Mice , Acinar Cells , Antioxidants , Calcium , Carbachol , Catalase , Cell Membrane , Cytosol , Extracellular Fluid , Hydrogen Peroxide , Hydrogen , Ion Transport , Pancreatitis , Perfusion , Reactive Oxygen Species , Reticulum , Ruthenium Red , Thapsigargin
SELECTION OF CITATIONS
SEARCH DETAIL